Tetrahedron Letters No. 25, pp 2179 - 2182, 1974. Pergamon Press. Printed in Great Britain.

NUCLEAR MAGNETIC RESONANCE STUDIES. III. APPLICATION OF TRIS-(1,1,1,2,2,3,3-HEPTAFLUORO-7,7-DIMETHYL-4,6-OCTANEDIONATO)EUROPIUM AS A SHIFT REAGENT FOR PHENOLS¹

Kwang-Ting Liu, ^{*} Min-Fu Hsu, and Jenn-Shing Chen Department of Chemistry, National Taiwan University ^{*} Taipei, Republic of China (Received in Japan 27 April 1974; received in UK for publication 13 May 1974)

The application of β -diketone complexes of lanthanide ions as nmr shift reafents to many classes of organic compounds is a recent development of great potential and utility.² They were, however, considered to be inapplicable to phenols and carboxylic acids, since the pioneering work of Sanders and Williams³ demonstrated that tris(dipivalomethanato)europium, Eu(dpm)₃, was decomposed by these two types of compounds. The recent interest in the use of tris-(1,1,1,2,2,3,3-heptafluoro-7,7-dimethyl-4,6-octanedionato)europium, Eu(fod)₃, as a shift reagent for 2,4-dimethyl-phenol⁴ prompts us to report the results of our independent studies on alkyl- and nitrophenols.

Platzed and Demerseman have studied the effect of $Eu(dpm)_3$ on a number of weakly acidic phenols.⁵ Under their conditions, however, we were unable to obtain any high resolution spectra, obviously due to the instability of $Eu(dpm)_3$ to phenols with pKa values even greater than 10. The more acidic $Eu(fod)_3$ should be less unstable and might be useful for phenols. Indeed, $Eu(fod)_3$ induced pmr spectra have been obtained for <u>o</u>-, <u>m</u>-, and <u>p</u>-cresol, 2,4-, 3,4-, and 3,5-dimethylphenol, phenol, thymol, and <u>p</u>-nitrophenol. No decomposition of the reagent has been detected. With a moderate concentration of $Eu(fod)_3$.

2179

 $Eu(fod)_3$ /substrate molar ratio of 0.2 to 0.7, only the <u>ortho</u> proton resonance for <u>p</u>-nitrophenol showed significant broadening. The pertinent data are listed in Tables I and II.⁷

From Table I, it is clear that in addition to the metal-proton distance factor the induced shifts are influenced by both steric and electronic effects of substituents. Among the phenols under examination, the smallest shift was realized for the most acidic <u>p</u>-nitrophenol. The less acidic alkylated phenols displayed larger shifts than those of the unsubstituted one. For phenols of similar acidity, <u>e</u>. <u>g</u>., 2,4-dimethylphenol vs. thymol,⁸ steric hindrance at the coordination site reduced the induced shift appreciably.

A linear relationship has been observed between the induced shifts and the $Eu(fod)_3$ /substrate molar ratios.⁷ Extrapolation to zero concentration of $Eu(fod)_3$ gives the approximate chemical shift^{9, 10} of protons of uncomplexed phenols. The excellent agreement between the extrapolated and observed values(Table II) makes it possible to estimate the chemical shift of an individual proton in a complex system with reasonable accuracy.

With the exception of \underline{o} -cresol, spectral simplification can be achieved without loss of resolution provided sufficient Eu(fod)₃ has been added. Nonetheless, the Eu(fod)₃ or Eu(dpm)₃ induced spectrum of the corresponding \underline{o} -tolyl acetate is resolvable.¹¹ Consequently, although some macrocyclic germanium shift reagents have recently been found to be effective with phenols.¹² the readily available europium reagents are still the most convenient shift reagents for investigating phenols.

Phenols ^a
for
Shifts :
Induced
Lanthanide
Normalized
i.
le

Ű								
Phenol	<u>e-ch3</u>	<u></u> ∎-cH ₃	₽-CH3	9-H	<u>о</u> '-н	₩-ш	ц-, Ш	P-H
•	1	1	ı	6•59		1.71	•	1.24
E-Cresol	ı	1.79	ı	9.88	9.88 10.34	t	2.82	2.64
D-Cresol	ł	ı	1.14	8.72		2.26		ı
			(0°66) ^b	(5.02)		(1.39)		
2,4-Dimethylphenol	6.95	ı	1.19	ı	8.76	3.10	2.06	ı
3.4-Dimethylphenol	ł	1.85	1.60	11.39	10.97	1	3.21	1
3.5-Dimethylphenol	ı	1.72	ŀ	9.53		ı		2.68
Thymol	2.31 ^c	0,46	ı	ı	4t . 9	2.43	ı	1.90
<u>P</u> -Nitrophenol	I	I	I	(1.39)		(0.84)		ł
In deuteriocnioroform(99%D) solution. Methine proton Table II. Proton Chemical Shifts for Uncomplexed Phenols ^a	rm(99%U) mical Sh	solutio ifts for	JC OI	tnine pro exed Pher	oton ol lols ^a	ısoprop	methine proton of isopropyl group. iplexed Phenols ^a	
Substrate	<u></u> m−cH ₃	ъ-сн _э	H ₃	e-cH3	H-'2		H-m	₽-H
<u>m</u> -Cresol	2.24 ^b (2.27) ^c	27) ^c –		6.55(6.52)	52)	(62•9)	(20•2)	(02.0)
p-Cresol	I	2.2	2.24(2.24)	6.58(6.51)	(1)		6.89(6.88)	,
3,4-Dimethylphenol	2.16(2.13)		2.16(2.18)	6.43(6.4	13) 6.50	(6.53)	6.43(6.43) 6.50(6.53) 6.83(6.84)	ı
3.5-Dimethylphenol	2.23(2.25)	5) -		6.31(6.41)	11)		ł	6.41(6.44)

S T
STOUBUA
น้
xeq
∎DT€
10 01
รี ม
0 H
ITS
L SALITS IOF UNCOMPLEXED
За I
Ē S
ton
Froton Chemical
•
7
-Fe

Substrate	<u>m</u> −CH ₃	₽-CH3	e-cH₃	ы- н- -	[H-W	H-d
<u>m</u> -Cresol	2.24 ^b (2.27) ^c	Т 0	6.55(6.52)		(6.79) (7.07) (6.70)	(02.9)
p-Cresol	ı	2.24(2.24)	2.24(2.24) 6.58(6.51)		6.89(6.88)	ı
3,4-Dimethylphenol	2.16(2.13)		2.16(2.18) 6.43(6.43) 6.50(6.53) 6.83(6.84)	6.50(6.53)	6.83(6.84)	ı
3.5-Dimethylphenol 2.23(2.25)	2.23(2.25)	ı	6.31(6.41)			6.41(6.44)
^a In ppm downfield from TMS. ^b Observed. ^C Extrapolated.	from TMS. ^b	Observed. ^C E	xtra polated			

No. 25

References and Notes:

- (1) Part II, K.-T. Liu, Tetrahedron Lett., 2747(1973).
- For the latest comprehensive review see: A. F. Cockerill, G. L. O.
 Davies, R. C. Harden, and D. M. Rackham, <u>Chem. Rev.</u>, <u>73</u>, 553(1973).
- (3) J. K. M. Sanders and D. H. Williams, Chem. Comm., 422(1970).
- (4) J. P. Shoffner, <u>J. Amer. Chem. Soc.</u>, <u>96</u>, 1599(1974).
- (5) N. Platzer and P. Demerseman, Bull. Soc. Chim. Fr., 192(1972).
- (6) In another independent study, the stability of Eu(fod)₃ in carboxylic acid was reported; and the advantage of Eu(fod)₃ due to its acidity was noted. See: D. S. Dyer, J. A. Cunningham, J. J. Brooks, R. E. Sievers, and R. E. Rondeau, "Nuclear Magnetic Resonance Shift Reagents," R. E. Sievers, Ed., Academic Press, New York, N. Y., 1973, p. 21ff.
- (7) All chemical shifts were measured at 60 MHz on 0.2-0.3 <u>M</u> solutions of phenols with five or more different concentrations of $Eu(fod)_3$. The normalized induced shifts reported here were extrapolated from the least-squares fit with correlation coefficients greater than 0.99 in most cases, and represent hypothetical shifts at equal molar concentrations of phenols and $Eu(fod)_3$. The calculated chemical shifts of the uncomplexed substrates were also obtained by extrapolation.
- (8) D. R. Boyd, <u>J. Chem. Soc.</u>, <u>107</u>, 1538(1915).
- (9) P. V. Demarco, T. K. Elzey, R. B. Lewis, and E. Wenkert, <u>J. Amer.</u> <u>Chem. Soc.</u>, <u>92</u>, 5734(1970).
- (10) J. Goodisman and R. S. Matthews, J. C. S. Chem. Comm., 127(1972).
- (11) K.-T. Liu, and M.-F. Hsu, manuscript in preparation.
- (12) J. E. Maskasky and M. E. Kenney, <u>J. Amer. Chem. Soc.</u>, <u>95</u>, 1443 (1973).